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Abstract

Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter

filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was

generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy
resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of

inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables

were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop

fibers. This categorization along with the removal of the AE data from the disbonding noise between the
aluminum liner and the composite overleap allowed the prediction of burst pressures in all three sets of

bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.
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Introduction

Acoustic Emission

Acoustic emission (AE) is a nondestructive evaluation method that involves instrumenting a

specimen with piezoelectric transducers and recording parametric representations of the

wave form data from flaw growth activity in order to perform a structural integrity analysis.

Analysis Of the AE data allows for the determination of failure mechanisms that are active in the

specimen. Consequently, it also contains information concerning the structural integrity.

Burst Pressure Prediction

The prediction of burst pressures in both damaged and undamaged filament wound

composite pressure vessels has been previously accomplished using linear multivariate statistical

analysis and backpropagation neural networks [1-3]. The goal of this research was to utilize a

backpropagation neural network to make burst pressure predictions on 15 inch (380 ram)

diameter graphite/epoxy filament wound composite overwrapped pressure vessels (COPVs

otherwise known as bottles) that were varied in the method of cure, type of damage, temperature,

and pressurization scheme: What made this research different from its predecessors was that the

disbonding of the composite overwrap from the aluminum liner generated multiple hit AE data

(noise) which had nothing to do with the structural integrity of the vessels. This precluded a

straightforward solution similar to those obtained previously until the noise data were eliminated.

Neural Networks

Artificial neural networks are a diverse set of robust mathematicai toois used to ciassify data

into clusters, recognize patterns, process signals, and do predictive modeling and forecasting.

Here an unsupervised SOM neural network was used to classify the composite failure

mechanisms that occur during pressurization. The backpropagation architecture is a feed-



forward design that was subsequentlyemployed for making supervised burst pressure
predictions.

Kohonen Self Organizing MaD (SOM)

In composite structures, the amp!itude frequencies [of occurrence] generated during damage

progression can be grouped and classified into failure mechanisms. For small data sets these

mechanisms can be seen as "humps" in the AE amplitude distributions. Figure 1 shows the

amplitude distribution for bottle SN002, an impact damaged graphite/epoxy COPV used for

training the backpropagation network, which appears to have four humps. This number of

failure mechanisms (four) was confirmed by classifying the AE amplitude data with a Kohonen

self-organizing map (SOM) neural network.
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Figure 1 AE amplitude distribution for COPV SN002

Baekpropagation

The backpropagation neural network is a feed-forward, supervised neural network, that is to

say, it does not return a feedback signal to itself during each training pass, and it is necessary to

train the network on a known solution before applying it to a new case. This is called supervised

learning. A backpropagation neural network is typically constructed with an input layer, one or

more hidden layers (each composed of multiple neurons) for mapping, and an output layer.

Experimental Procedure

Pressure Vessels

Eleven 15-inch diameter filament wound COPVs were wet wound on a filament winder. The

bottles were thin-walled aluminum cylinders overwrapped with graphite fibers and epoxy resin.

The winding sequence was 3 inner hoop plies, followed by 2 helical layers, and then 2 outer

hoop plies. Eight of the bottles were rotated at slow speeds (rotisserie style) during oven curing;

three were oven cured without rotation. Four of the COPVs were tested at ambient temperature,

while the remaining seven experienced cryogenic temperatures. Due to the nature of

piezoelectric materials, it was thought that the large variation in temperatures would have a

significant effect on transducer output voltage, as well as adding to the brittle nature of the

composite material.

Varying amounts of artificial damage were inflicted on the bottles in the form of impacts

from both blunt and sharp tups, as well as with the cutting of hoop fibers: five tows were cut in

the mid hoop ply and five in the first outer hoop ply. The strain rate was also varied non-

systematically in that the pressurization scheme used Oil each bottle test varied in both duration

and number of pressurization ramps/holds; thus, no two bottles were pressurized alike.

The amount of diversity in some of these variables and the small number of bottles would not

allow for statistical analysis of the effects of each variable. Therefore, neural networks were



em_ployedasthepri_m__arymethodof dataanalysis.
with thefailureor burstpressures.

Table1 summarizesthe test variablesalong

Table 1 Summary ofgra
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AE Data Collection

Acoustic emission data were successfully collected from all seven of the bottles in the test

set. A multi-channelPhysical Acoustics Corporation (PAC) AE analyzer was used to record the

acoustic emission flaw growth data from seven AE channels, each representing a transducer at a

unique location on the test bottles. This data acquisition unit also allowed for a separate

parametric input, which was used to record a +5.0 volt signal representative of the pressure in the

test specimen. Figure 2 shows a schematic diagram of the test setup.

Six PAC AE transducers were mounted equidistant around the circm'rderence of the top mad

bottom hoop winds on each bottle. The seventh transducer was mounted near the upper polar

boss on the helically wound portion of the bottles. In the ambient temperature tests, hot melt

glue was used to bond each transducer and provide acoustical coupling between the transducer

and the specimen. For the cryogenic tests, high-aqueous vacuum grease and a mechanical

housing were used to couple the transducers to the bottles. The data sampling threshold was set

to record all acoustic emission hits that had an amplitude of 60 dB or greater.
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Figure 2 Sensor positioning and test setup



AE Data Fihering

Even though constraints such as amplitude threshold, peak definition time (PDT=100/zs), hit

definition time (HDT=500/_s), and hit lockout time (HLT=500 #s) were applied to the acoustic

emission sampling, considerable noise and mult_le hit data were still present in the raw data
sets. HDT is the minimum time that an acoustic emission event must have to be recorded, and

the combination of HDT and HLT determines the maximum time for an event before it is

considered to be a multiple hit event [4]. These settings work in real-time as data are recorded.

Multiple hit data occur when many acoustic emission waveforms reach the transducer closely

spaced in time, one after another (in a condition of buffer overrun or in the cases where HDT and

HL]7 are not properly set). This results in a long artificial waveform that is actually comprised of

several smaller waveforms, which will have vastly different AE parameters than single hit data.

In this case, the multiple hit data are probably the result of composite disbonding fi:om the

aluminum liner, a failure mechanism which should not affect :the burst pressure.

In order to remove these multiple hits from the recorded data set, it was determined that any

acoustic emission hits having durations longer than 100 ms were to be removed. Rise time, the

waveform parameter that represents the time-to-peak of the waveform, was used to further

remove suspected multiple hit data. Long rise times typically indicate multiple hits logged

together. Thus, any hit with a rise time of greater than 25 ms was also removed from the data

set. The AE energy parameter is a measure of the area under the rectified waveform envelope.

In the case of these data, many hits were reported by the data acquisition system to have zero

energy. These hits were also discarded under the assumption that they were noise.

The final filter applied to the data was to select those data points to be used in the actual burst

pressure prediction. After removing all of the data prior to the start of pressurization (the

acquisition hardware recorded AE parameter data before pressurization commenced), it was

decided that the first 2000 data points would provide a sufficient sample Size for the neural

network to train on while still taking only those data that were acquired at or below 20 percent of

the anticipated burst pressure. In general, damage is inflicted on composite bottles during any

pressurization cycle; therefore, the goal was to predict on data taken at low proof pressures.

Using the final edited data set _om each bottle, a t2equency distribution of the amplitudes

was extracted for training and testing of the backpropagation neural network. The histogram

representation of an amplitude distribution for bottle S/N 002 can be seen in Figure 1, and the

amplitude distributions from the edited data for alJ eleven bottles are summarized in Table 2.

The neural network was trained to analyze the subtle differences in the distributions 12om each

bottle and match them to the damage type and burst pressures provided in the training set.

Table 2 Finalized amplitude distribution frequencies (with categorical variables in bold)
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Results

Network Architecture

The backpropagation neural network used herein [4] had the architecture shown in Figure 3.

The input for each bottle consisted of a 1 x 44 dimensional vector with 3 entries representing the

damage categories (001 undamaged; 010 impacted; and 100 lacerated) plus 41 integers

representing the frequency distribution of amplitudes from 60 dB to 100 dB (Table 2). The

actual burst pressure was also supplied as an input for error calculation at the output.

Each neuron in the hidden layer contains a hyperbolic tangent activation or transfer function

that can be used to approximate the shape of the amplitude distributions. A large number of

neurons can be used together to approximate compound and/or discontinuous curves that will fit

the training data well, but if trained too closely, the backpropagation neural network may not

predict accurately on the test data. Too few neurons in the hidden layer will result in loosely- fit

curves that will not correspond weii to the training or test data. Using this approach, it was

found that 11 neurons in the hidden layer offered the network that would best fit both the training
and the test data.

Damage 2
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t Layer

Amplitude (Burst Pressure-
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Hidden Layer
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Input Layer
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Figure 3 Network architecture

Training the Network

The backpropagation neural network, generated using Neuratware's NeuralWorks

Professional II Plus software package, was trained on a total of seven COPVs, including bottles

from each of the three damage "_'_-_'_o Cq-o_,l_ 3). T_,_ " _.... t chosen so that a bAgh

and low burst pressure COPV from each damage category was included. The undamaged
oate_ar'xr nl_c_ inolnctart n mictrnna_ hnr_t nre_qllra hattle Thn_ the enaeh ,qize wag _even nr the

total number of bottles in the training set.

After numerous experimental iterations, the optimum network architecture and input

parameters were determined [4]. The learning tale was the normalized cumulative delta, and the

optimal learning coefficient for the network was found to be 0.30 with a momentum of 0.40.



Thisrelativelylargelearningcoefficientallowedthenetworkto trainveryquickly andto learnin
only 71 cycles. Becausethe network trainedso quickly, bias neuronswere not employedto
speedup the training process. Transition points and learningcoefficient ratios were not
importanteitherbecausethedefaulttra_n_sitionpoint of 5000cycleswasneverreached,while the
F' offsetwassetat 0.10.

A root meansquare(RMS) error valueon the sevenCOPVsin the trainingset is computed
by the soft-wareafter every trainingcycle to determinehow well thenetwork hastrained. Here
theRMS error convergencewasset at sevenpercent. This meansthat trainingwas considered
completewhen the network training curvewas within anRMS error of sevenpercentof the
trainingdata. It was foundthat ahigherconvergencecriterionleft thenetworktoo looselyfit to
thetraining.data,anda lowerconvergencecriterion forcedtighter fitting of the trainingdatabut
poorerfitting of thetestdata.

Burst Pressure Predictions

Finally, the trained network was used to predict burst pressures for both the training and test

sets. Table 3 shows a summary of the prediction results on all the COPVs. The maximum

prediction error in the seven bottle training set was -2.78 percent, and the maximum error in the

four bottle test set was 3.38 percent. All of these values were well within the goal of predicting

the burst pressures to within a _-5 percent error.

Table 3 Summary of training and test results

I Predicted

I Burst Burst

Pressure Pressure Error

S/N Damage Purpose [psig] [psig] [%]

002 : _- ,Train: . ' _3880 i i&827,597,, -2.7,8

003 ..... Train: 2004 ,: t5., - -I,99::_

005 None Test 2760 2853.188 3.38

009, ::; :None -!" ':Z/_{2544 : ": 2584:266 .Q,1.5:8::,

010 None Test 2460 2432.273 - i. 12

013 None _" = Tr_i{h:,. _:; _2874- _ =2791,009, =_ -,2.88- :

-014 _Nbne.:[" Traiifi/_ )2390 _:2:35.8:274:_,'. :1232 :

_7018 - .,,Lacerated Tmili, :, 2864- _,:2869.=18-i (', _.0,18/:

020 Impacted Test 1967 1999.875 1.67

025 - Lacerated " Train ..... ,: 2393 / /)2369.740?: -0:97 ?

026 , Lacerated Test 2675 2643.174 -1.19

Conclusions

The worst case prediction error of 3.38 percent was very low, and the network trained

quickly in spite of the many test variables involved. If there were any variations in the amplitude

distribution data due to cure mode, temperature, and pressurization scheme, they were

automatically taken into account by the backpropagation neural network. The fact that network

training was accomplished in only 71 cycles attests to the effectiveness of preprocessing or

editing the AE data to remove the multiple hit data and other noises:
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